
Meltdown & Spectre: Exploring and Expanding the PoCs

Juliana Furgala, Annie Chen
Meltdown focus, Spectre focus

Tufts University
juliana.furgala@eecs.tufts.edu, annie.chen@tufts.edu

Abstract
For years it was commonly assumed that hardware optimiza-
tions result in performance gains without introducing any secu-
rity vulnerabilities. With the rise of Meltdown and Spectre this
longheld assumption has been disproved. These key vulnera-
bilities rely on out of order execution and speculative execution
respectively.

In this project, both Meltdown and Spectre exploits were ex-
amined and reproduced to better understand the extent of these
vulnerabilities. Reproducing the Meltdown and Spectre exploits
from the Proof of Concept (PoC) programs from their respective
papers were successful after the correct machine set up, envi-
ronments, and libraries [13, 16, 10]. After reproducing the code
samples, additional enhancements were made.

For Meltdown, these enhancements were adapting the demos
to allow users to run them successfully (primary) and combin-
ing a demo with new user activity to capture binary that resulted
from download actions (secondary). Meltdown was both suc-
cessfully reproduced and enhanced as planned. The key to en-
abling user run capabilities was adapting the kaslr demo, the re-
sults of which the rest of Meltdown relied upon.

For Spectre, the goal of the extension was to generate more
accurate results when extracting data from a timing based cache
side channel. This was achieved through implementing a dy-
namic cache hit threshold tool. The implemented tool was able
to measure at runtime the cache hit latency for a machine that it
is running on, and use that value in the Flush+Reload side chan-
nel. When this tool was integrated with the Spectre PoC code, it
made the Spectre exploit more accurate by being able to extract
data more precisely from the side channel.

1 Introduction
First we present background concepts underlying the Meltdown
and Spectre vulnerabilities, our respective research focuses.
Then we explore the setups required to recreate them. Finally
we explain the enhancements made and the results uncovered in
these experiments.

For both the Meltdown and Spectre exploits, the PoC scripts
were successfully reproduced. To further understand the extent
in which these exploits can be realistically deployed, we imple-
mented additional enhancements to both exploits. To not fur-
ther aid malicious attackers in conducting these exploits, the ex-
act implemented programs are not posted anywhere, but rather
talked about in a higher overview in this paper. Psuedo code

and algorithms are described and shown, and the results are ana-
lyzed, but the exact programs remain private. We believe that by
demonstrating the process, results, and conclusions, readers will
be convinced that Meltdown and Spectre are indeed real threats
to our systems, not just theoretical ideas of possible exploits.

2 Project Background
While the research has been split halfway for one individual fo-
cus on Meltdown and the other on Spectre, the motivation and
goals of both topics remain similar. Our motivations for the
projects were two-fold: to better understand the execution of
these security exploits and how they are conducted based on
core principles of computer architecture; to enhance the pub-
licly available scripts into their full, sophisticated forms, thereby
demonstrating the extent of the dangers of Meltdown and Spec-
tre.

Our goals stem from these motivations. For our respective se-
curity vulnerabilities, we sought to exploit them on an unpatched
machine to better understand how an attack can be executed.
Once this was accomplished we then expanded the functionali-
ties of the public Proof of Concepts (PoCs). For Meltdown, this
was modifying the PoC scripts to run with user access rather
than administrative access. With Spectre it was incorporating
additional software to optimize the PoCs for improved accuracy.

In the below sections, details of Meltdown and Spectre are
provided to better understand the concepts underlying these se-
curity vulnerabilities.

2.1 Meltdown
Discovered in parallel by three sets of researchers[16, 11], Melt-
down shook up the computer science computer when it was an-
nounced. Meltdown takes advantage of a security vulnerability
accidentally introduced in the name of performance. As the in-
struction pipeline became a bottleneck, hardware optimizations
were developed to further improve processor performance. The
key optimizations that enable Meltdown are prefetching and out
of order instruction execution. The assumed threat model is that
of remote execution and no administrative access.

In essence Meltdown uses the early, out of order execution of
an instruction before the permission check to extract information
out of the machine. Despite the cache flushing that occurs upon
a thrown permission error, there is a microarchitectural footprint
left behind by the access attempt. The presence of this foot-
print strips away the processor security promise of memory iso-

lation, allowing any user to access sensitive information from
other users or the kernel.

The second part of this exploit is a timing-based side channel
attack on the cache. Upon scanning the memory with a tac-
tic known as Flush+Reload, the formerly accessed page will hit
more quickly than the other pages in memory, based on the hit-
miss cache threshold. Then the attacker can extract informa-
tion contained within that page. This process can be repeated to
dump as much of the memory as desired.

For information on common questions and company-specific
responses to Meltdown see [8].

2.1.1 Core Concepts
• Prefetching is the advance fetching of future instructions

into the instruction pipeline based on predictions made
from local and/or global branch history structures or from
other techniques.

• Out of order execution is premised on pipelining, where
instructions are being handled simultaneously on different
subpaths and stages of the processor. As some stages or op-
erations may take longer to execute, such as division, this
can lead to instructions being executed (though not com-
mitted) out of order.

• KASLR, short for kernel address space layout randomiza-
tion, changes the location of the kernel each time the com-
puter is turned on, theoretically ensuring that an attacker
could not reliably hope to read the kernel. As Meltdown
indicates, this assumption does not hold.

• The hit-miss threshold is the estimated and fluctuating
boundary between which a memory access is a hit or a
miss. This threshold can be determined by averaging many
accesses and is instrumental in carrying out the Meltdown
attack. For a code sample, see Section 3.2.3.

• Flush+Reload is one tactic by which an attacker can at-
tempt to determine if a page falls crosses the hit-miss cache
threshold. For a code sample, see Listing 1.

Listing 1: Abbreviated Flush+Reload logic from the Melt-
down PoC repository [10]
s t a t i c i n t f l u s h r e l o a d (vo id ∗ p t r) {

u i n t 6 4 t s t a r t = 0 , end = 0 ;

s t a r t = r d t s c () ;
maccess (p t r) ;
end = r d t s c () ;

f l u s h (p t r) ;

d e l t a = end − s t a r t ;
i f (d e l t a < c a c h e m i s s t h r e s h o l d)
{

r e t u r n 1 ;
}
r e t u r n 0 ;

}

Figure 1: The core logic and results of the kaslr demo

2.1.2 Proof of Concept Demonstrations (Demos)
The following demos are all available at the IAIK meltdown PoC
public repository[10]. Their purposes are summarized below.

• Checking for machine support
This demo checks if memory can be read by the libkdump
sublibrary on the machine being used.

• Breaking KASLR
The kaslr demo ’breaks’ KASLR by getting the start lo-
cation of memory from the /proc/<pid>/pagemap file. It
then calculates the physical map offset with this start loca-
tion and common, default machine values for the offset and
delta. For further detail on the core logic of the kaslr demo
see Figure 1. Note that this demo requires administrative
privileges and will not run without sudo.

• Testing read reliability
Having the physical memory map offset located in the kaslr
demo, the script attempts to read the memory from that
point onwards, recording its overall percentage of success-
ful accesses. Note that this goes through all readable mem-
ory on the machine.

• Reading physical memory
For this demo the user artificially works with a secret so
that the attacker can detect it in real time. In a real sce-
nario this could look like a user logging into a service with
their credentials. It also requires the physical memory map
offset. For further detail on the core logic of the physical
memory reader demo see Figure 2.

• Dumping memory
The demo iterates through the entirety of memory or until a

Figure 2: The core logic and results of the physical memory
reader demo

Figure 3: The core logic and results of the memory dump demo

given end address and prints all memory in that range. Sim-
ilarly to the reliability and physical memory reader demos
this demo requires the physical memory map offset from
the kaslr demo.
For further detail on the core logic of the memory dump
demo see Figure 3.

2.1.3 Variations
The IAIK repository PoC presents three main variations of Melt-
down: regular/null, no null, and fast. These three versions of
Meltdown are very similar with only one or two assembly lines
different between each. null uses an additional argument with
a null value, which no null does not, giving it its name. Fast is
simply a shorter version of the no null with one less instruction.

All three variations exploit the same vulnerability. However,
some are more effective with certain machines than others, de-
pending on the specific machine instruction set and configura-
tion.

2.2 Spectre
Spectre is a hardware security vulnerability that was discovered
around the same time as Meltdown (2018). The threat model of
this exploit is one that can be executed remotely and requires no
admin access. Unlike Meltdown, where typically kernel mem-
ory is attacked, Spectre generally aims at exploiting browser
memory.

Spectre’s exploit heavily relies on branch prediction and
speculative execution. Branch prediction and speculative ex-
ecution are techniques that modern processors use to improve

performance. Essentially, if a branch is about to be executed and
is dependent on a memory value that is in the process of being
read, the processor will attempt to predict the direction of the
branch (true or false) and start loading instructions based on this
prediction. When the memory value has arrived, the processor
will either discard and flush the instructions if the prediction was
incorrect, or commit the speculative computation if correct. A
spectre attack involves ”inducing a victim to speculatively per-
form operations that would not occur during correct program
execution and which leak the victims confidential information
via a side channel to the adversary” [13].

From exploiting branch prediction and speculative execution,
Spectre is able to violate much of the security assumptions of
operating systems, containerization, just-in-time (JIT) compila-
tion, and countermeasures to cache timing and side-channel at-
tacks [13]. Furthermore, due to the nature of Spectre being a
hardware vulnerability that relies on performance optimization
techniques that is found in almost all modern processors, Spec-
tre, like Meltdown, poses as a serious threat for billions of de-
vices with microprocessors from Intel, AMD, and ARM.

There are two general variations of Spectre that differ in the
method of achieving speculative execution and the method used
to leak the information.

2.2.1 Variant 1: Exploiting Conditional Branches
The first variant of Spectre involves a bounds check bypass
through exploiting conditional branches [13]. We demonstrate
in detail how this variant works as the Spectre extension in this
project is focused on this variant. Consider the example in List-
ing 2. In the first line of the code, a bounds check is made to
ensure that the value x is within the size of the array. This check
prevents the processor from reading sensitive data in memory
outside of array1. If x is a value that is larger or equal to the size
of array1, then the correct execution would be for the body of the
if-statement to never be run at all. However, before the result of
the bounds check is known, the processor can speculatively load
the code in the body of the if-statement if it predicts the branch to
be true. Thus, an adversary can simply train the branch predictor
to keep predicting true by first running this code segment with
valid values of x (within the size of array1) multiple times. This
leads the branch predictor to believe the if-conditional will likely
to be true. Then, the adversary can supply a value for x, with x
= (address of a secret byte to read) - (base address of array1).
During the speculative execution, array1[x], which resolves to
the secret byte k in the victim’s memory, will be computed to
find the address of array2[k * 4096].

When the bounds check is finally made but discovered to
be mispredicted, the speculatively loaded instructions would be
flushed from the pipeline, but the the read of array2 at an address
dependent on k is still within the cache state. To complete the at-
tack, the adversary is able to measure which location in array2 is
in the cache from a side channel measure, such as Flush+Reload.
This reveals the value of secret byte k, since the victims specu-
lative execution cached array2[k*4096]. This example clearly
shows that ”speculative execution and branch prediction may al-
low unauthorized disclosure of information to an attacker with
local user access via a side-channel analysis” [5].

Listing 2: Conditional Branch Example from the Spectre Paper
[13]

i f (x < a r r a y 1 s i z e) {
y = a r r a y 2 [a r r a y 1 [x] ∗ 4 0 9 6] ;

}

2.2.2 Variant 2: Exploiting Indirect Branches
The second common variant of Spectre relies on the attack mis-
training the branch predictor in one context such that in another
context (i.e. process), the branch predictor will go to a malicious
destination chosen by the attacker [4]. This destination would be
a specific code fragment in the victim’s address space that would
be able to transfer the victim’s sensitive information into a covert
channel upon speculative execution. In other words, the adver-
sary can train branch predictors to go in a direction such that the
program will speculatively execute to locations that would never
have originally occurred during legitimate program execution.
More details and examples of Spectre variant can be read about
in the original Spectre paper [13].

For both variants, a commonly used side channel to extract
the information is through the L1 data cache timing. Though
there are other forms of side channels from other microarchi-
tectural components, including the instruction cache [1], lower
level caches[9], and branch history[2], the project focuses on us-
ing the L1 data cache. The L1 data cache is chosen as the side
channel to reproduce the Spectre attack as it is one of the most
common effective side channels that can be ported on different
machines, regardless of the variations in microarchitecture. This
was discovered and explored as the main research of the Spectre
focus, which will be discussed later on in detail.

3 Experimental Methodology
3.1 Meltdown
3.1.1 Initial Attempt
Originally the machine used had an i5 processor chip with the
Ubuntu 14.04 operating system. This proved to be problematic
on two counts.

The i5 chip lacked the new optimization capabilities of the
i7 processor chips, especially TSX. TSX, or Transactional Syn-
chronization Extensions, allows for greatly improved perfor-
mance and pipelining. Since Meltdown relies on a timing-based
side channel attack (using the hit-miss threshold) to determine
the memory accessed from the pagemap file, this improvement
makes Meltdown more reliable and repeatable. In contrast the i5
chip lacks this capability and would require a potentially more
sophisticated script to maintain the same repeatability. Note that
even on an i7 chip Meltdown is not always repeatable.

As well the first operating system used was Ubuntu 14.04
which is different than its successor Ubuntu 16.04. This means
that the Ubuntu 14.04 OS did not react fully to the regular Melt-
down variation like Ubuntu 16.04 did. While the i5 chip differ-
ence is significant, the two OS versions seemed to require differ-
ent variations of Meltdown. Likely there are many OS-related
factors that go into this but they were not further explored at this
juncture.

3.1.2 Final Setup

With these discoveries in mind I switched out the i5 machine
with one that had an i7 chip, specifically the Intel(R) Core(TM)
i7-6700K. The operating system run on this machine was the
more updated, yet still unpatched, Ubuntu 16.04 with an x86 64
instruction set. The results pictured above in Figures 1, 2, and 3
are from these testing conditions.

To get the original scripts running, first all dependencies
needed to be satisfied, mainly taskset, glibc static, and linux-
tools-4.4.0-31-generic. Now that the environment was setup the
scripts were able to run.

3.1.3 Modifications

Having successfully run the demos on the machine I turned to
extending its use cases.

One shorter case I tried was of recording memory accesses.
The original authors of the Meltdown paper[16] recorded log-
in credentials. Instead I looked at memory accesses via apt-get
upgrade. These accesses, which took place during the active
run of the scripts, were observed and the binary was recorded
in terminal. An attacker could use this to spy on a user’s down-
load activity at any point in time, assuming that their machine
remained unpatched and vulnerable.

The main modification I focused on was changing the script
for user use. With kaslr as the only demo that requires the use
of sudo, as it accesses a protected file for page information, the
lack of user run privileges hinges on this demo. By adapting
this demo to allow for an unauthorized user to break KASLR
the rest of the demos can be run in the exact same way as they
were before, with the physical memory map offset from the kaslr
demo. Therefore this was the demo that I targeted. The new
threat model with the user modification assumes remote execu-
tion with an attacker that has only user permissions (versus the
administrative privileges needed for the original demo).

Since there are accountability concerns with script kiddies
the original, public demo lacks the key feature of user usability.
The modified code from this research will not be posted for the
same reason. In place of code for the modification I offer the
following steps:

• Fork and have the child process access the kernel memory.

• Catch the resulting exception.

• Use the cache as a covert channel through Flush + Reload.

– Determine the hit/miss threshold of the cache.

– Iterate through the pages and check the timing of
each access.

– Considerably less access time below threshold indi-
cates the cached page.

– Dump the cached value.

• Continue this as many times as desired.

3.2 Spectre
3.2.1 Reproducing Spectre Proof of Concept
The Spectre attack outlined in Appendix C of the paper Spectre
attacks: Exploiting speculative execution (2018) was success-
fully reproduced after some modification [13]. The code was
running on a machine with the Darwin Kernel Version 14.5.0:
x86 64 operating system, and a processor of Intel(R) Core(TM)
i5-5250U CPU @ 1.60GHz. Note that this architecture and
OS version was appropriate to reproduce this attack because it
is on a processor that is known to be vulnerable to Meltdown
and Spectre because of its architecture, and an OS version early
enough that the patches for these vulnerabilities have not been
installed. The program can be run on GNU Make and GCC.

3.2.2 Initial Setup Modifications
First, in order to reproduce the PoC code, the code had to be
modified to include the correct libraries and system calls that
translate to the corresponding instructions that the CPU is able
to handle. Depending on the version of the CPU, certain instruc-
tions will need to be disabled in order for the program to run cor-
rectly. This is because certain newer instructions that the code
uses were not yet introduced for older CPUs. If required, alter-
native functions need to be implemented to run the code that can
do similar functionalities. For example, the clflush function
is used to flush out specific data from the cache, but was only
introduced with the SSE2 instruction set [17]. This means that
most CPUS pre-Pentium 4 (prior to the SSE2 being integrated)
will need to disable this instruction, and find a means to mimic
the same functionality. The clflush function is used to com-
plete the Flush+Reload side channel technique to flush a specific
cache line from all levels of the processor’s cache hierarchy. For
processors without the SSE2 instruction set, an alternative is to
implement a function that iteratively reads memory addresses at
cache block size intervals. The iterations will run a number of
times until the processor cache is filled, depending on the size of
the cache. This works as a method of ”flushing” out the cache
by loading arbitrary data into it.

After these checks of the code were made and the necessary
functions rewritten to ensure that the PoC code can successfully
run on the machine, the attack was able to be reproduced, though
not at 100% accuracy. Figure 4 shows a part of a screenshot of
the program output when the code ran. The full image is not
shown due to space constraints. However, as one can see, the
characters that are outputted are ”Th? t?lephone” when in fact
the actual victim bytes to be read are ”The telephone”. The ”?”
characters that is seen shows that the program was not able to
accurately and clearly deduce the exact byte that was loaded.
The same kind of pattern goes on for the rest of the string (not
pictured in the screenshot) in which out of 40 bytes, 13 bytes
were unclear and ”?”. The next section goes into detail on why
the results were not completely accurate and successful, and how
improvements can be made to more accurately read the data.

3.2.3 Creating a Dynamic Cache Hit Threshold Measure-
ment Tool

After thoroughly examining the code, it was discovered that
during the cache hit threshold value was hardcoded as part of

Figure 4: Screenshot of Spectre reproduced with some inaccu-
racy

the program. This cache hit threshold is important, as the
Flush+Reload technique heavily depends on this threshold as a
way of determining whether a memory access was a cache hit or
cache miss. I predicted that it was because this cache hit thresh-
old was not accurate for the machine that the code was run on
that resulted in inaccurate readings for the byte. The reasoning
behind this is that cache thresholds vary for each machine with
a different computer architecture, as a cache hit time on each
machine would vary, depending on properties like cycles per in-
struction, memory hierarchy, physical processor attributes. In
other words, one can imagine that a processor from 2018 would
have a much lower cache hit time than a processor from 2005,
as technological developments would have improved the cache
hit time by a significant margin.

To address this issue, I built an additional program that can
measure a machine’s cache hit threshold dynamically. Due to
the same dangers as noted for the Meltdown modification, the
exact code of this program will not be posted. Rather, only the
algorithm will be shown. The main area of interest is in the
following:

Listing 3: Main algorithm to measure the cache hit threshold of
a machine

temp = d a t a [0] ; / / Data a c c e s s : cache miss
f o r (i n t i = 0 ; i < RUNS; i ++) {

mm mfence () ; / / S t a r t s e r i a l i z e
t ime1 = r d t s c () ; / / Timer
temp = d a t a [0] ; / / Data a c c e s s : h i t
t o t a l t i m e += r d t s c () − t ime1 ; / / Timer
mm mfence () ; / / End s e r i a l i z e

}
c a c h e t h r e s h o l d = t o t a l t i m e / RUNS;

Listing 3 shows the pseudocode that demonstrates how to
compute the cache hit threshold of a machine. In essence, the
time for a data access is measured across multiple runs and aver-
aged out, to provide a more accurate measurement of the cache
hit time. The function rdtsc is used as a timing mechanism,
and is a system call that returns the processor time stamp in
terms of clock cycles [15]. Thus, the result of the cache hit
threshold is in terms of clock cycles, rather than in the unit of
seconds. This is important because the Spectre PoC code ex-
pects the cache hit threshold to be in terms of clock cycles too.

An important function that was missing in the initial devel-
opment of the code was mfence. Without it, when the program

Figure 5: Output of running the implemented cache hit threshold
tool. The red box shows the number of clock cycles a L1 cache
hit took. The results are further analyzed in Section 4.2

was run multiple times, different cache threshold outputs would
occur, varying from 30-150. As one can tell, this range is far
too wide to accurately determine the cache threshold. Upon fur-
ther examination, because of the nature of modern processors to
use out of order execution as a means of performance improve-
ment when running any program, the rdtsc timing functions
were likely being executed out of order, thereby giving a wide,
unpredictable variation of results on each run. This is because
when rdtsc instructions are executed out of order, they lose
their value as a timing mechanism.

After this analysis, the mfence function was added before
the first rdtsc() call and another after the last rdtsc() call
to ensure that the block of code in between keeps its serializa-
tion. After this was added, the program started outputting results
with a much smaller range of variation between different runs.
Figure 5 shows a run of the program. The OS version and CPU
chip information are first printed out, as this is helpful in ana-
lyzing and understanding the results. Then, the data address of
the memory access is printed, as well as the calculated cache
miss and cache hit latency. For our purposes, the most impor-
tant result is the cache hit latency, as that acts as the cache hit
threshold for the Spectre PoC program. The tool for calculating
the cache hit threshold is now ready to be used and integrated
into the Spectre PoC code. This means that in the PoC program,
before the exploit happens, the ”add-on” tool would have calcu-
lated the cache hit threshold at runtime, and then assign that as
the cache hit threshold for the Flush+Reload, instead of a single
hardcoded number as seen previously,

4 Results and Analysis
4.1 Meltdown
The experiment was generally successful though not as reliable
as was desired. Meltdown was indeed capable of capturing bi-
nary, which while not printable via terminal can be collected
and recorded by an attacker to gain information about a user’s
activity. To see this in action see Figure 6. This binary could

Figure 6: The results of a binary capture from a sample applica-
tion download via terminal

represent programs, images, etc.
Bringing user access to the existing scripts came down to fo-

cusing on the kaslr demo. With modifications the kaslr script
can then be successfully run without sudo. Modifying this sin-
gle demo allows a user to derive the physical map offset, which
the other demos require as input. This location is a secret that
is protected by an administrative access check. Once this infor-
mation is discovered by exploiting out of order execution then
the Meltdown scripts know where to look for kernel and user
information. Therefore, changing this single source of input in-
formation used by the rest of the demos transforms Meltdown
into its regular, more dangerous form.

There were some difficulties even with the i7, Ubuntu 16.04
arrangement with the original script. The replacement machine
had 1 TB of space, making for long run times for the reliability
and memdump demos as well resulting in occasionally wonky
behavior. This disk space issue could be resolved through use of
partitioning to trick the operating system into thinking there is
less memory available than there really is. However, considering
that the attacker would not be partitioning a victim’s computer
as part of their attack, the overt, unexpected behaviors would be
observable to the user.

When the memory filler script that accompanied the mem-
dump demo filled more memory than swap space available (in
this case 8 GB) then applications froze (e.g Firefox) and ter-
minals broke, resulting in scrambled inputs, letter swaps, and
terminal prompt splicing and duplication. For one example of
this see Figure 7. While the user would not likely be running the
memory filler script presented by the authors of the Meltdown
paper there are similar, realistic scenarios. This is analogous to
a user downloading a multi-gigabyte application or running a
majorly memory-intensive application of a similar scale.

Progress could still be made for the modified Meltdown script
in this research, such as preventing the unintended behaviors and
improving repeatability. However, the missing core features of
the full Meltdown exploit were implemented.

4.2 Spectre
Once the cache hit threshold tool was integrated, every machine
that runs the modified PoC program will now run with its own
the cache hit threshold appropriate for its machine. For newer
processors, this number can range from around 20-90, depend-
ing on the architecture of the machine. For older processors,
this number can reach up to 200. To understand what this value
means, we need to consider how this number is calculated. As
noted in the earlier section, the rdtsc instruction in Listing 3
measures the number of cycles, and so the timing measures the
number of cycles that occurred in between the two rdtsc func-
tions. As intended, only the data access instruction is between

Figure 7: Firefox freezing while running the memory filler script

the two timing functions, as the goal is to time the number of
cycles for a cache hit.

However, even on new processors, a measurement of 20 cy-
cles for a L1 cache access seems extreme, as processors like the
Intel Core i7 and Intel Xeon 5500 have an access latency of the
L1 data cache of 4 cycles [7]. The reason behind this is that
there is overhead for calling the rdtsc function itself, and pos-
sibly additional overhead when the compiler inserts instructions
for the loop. However, this is not an issue when integrating in
the Spectre PoC program, because the original program already
accounts for this. In other words, during the Flush+Reload code
in the program, the code measures a memory access in the same
way as Listing 3, thereby also including the overhead given by
the loop and rdtsc function call.

After running the modified Spectre PoC program, the new
results are shown in Figure 8. A cropped screenshot of the re-
sults are shown due to space constraints. As we can see from
Figure 8, the original ”?” from Figure 4 have all been removed.
This means that the program, when extracting the secret vic-
tim data from the Flush+Reload side channel, was able to more
accurately find the right bytes that was cached. However, it is
noted that it is not 100% successful on all runs, as there are still
a few instances when running the modified Spectre PoC pro-
gram repeatedly, that a few ”?” will still appear in the results.
Overall, we see a significant improvement from the initial re-
sults in Figure 4. This confirms that the implemented cache hit
threshold program did indeed enhance the Spectre PoC. It also
shows the importance of having an appropriate cache hit thresh-
old for a given machine. This is logical, as the only way the
Flush+Reload technique will work is if it can tell the difference
between a cache hit and a cache miss, which relies solely on the
cache hit threshold.

Though an improvement in accuracy is generally positively
regarded, it also creates a worrisome picture for the future of un-
patched machines in a bigger picture. These presented results
and analysis shows that the Spectre attack can be tuned and fur-
ther enhanced to increase its accuracy, and presents a very real
threat to a multitude of users.

5 Current Work and Solutions
While there have been a number of OS patches and microcode
updates from numerous technology companies like Microsoft,
Intel, Apple, a general result from applying these patches and

Figure 8: Cropped screenshot of the results from running the
modified Spectre PoC proram with the integration of the dy-
namic cache hit threshold measurement tool.

updates have been a slowdown in the computer system. These
patches have often resulted in additional overhead and decrease
in performance that is noticeable for users. Some of the patches
actually caused further vulnerabilities, such as the initial Win-
dows Meltdown patch, which opened up arbitrary write access
and had to be rolled back[18]. As well, these patches are truly
only short-term solutions for a hardware-based problem. The
long-term solution will come from chip makers who will need
to account for these vulnerabilities in future designs. Until then
software patches are the most viable, universal solution.

5.1 Meltdown
Windows[19], Unix-based systems such as Debian[6], and Ap-
ple Inc.[3] all introduced patches for Meltdown that led to
double-digit performance losses. The reason for this was that
many of them limited or disabled speculative execution as a pre-
ventative measure. Most of these initial attempts were repeat-
edly revised and the Windows patch was even rolled back after
it was revealed that it caused further problems by allowing for
arbitrary write access[18]. In the face of these quick fixes, re-
searchers began to look at longer term solutions.

Research has already been conducted for potential hardware
mitigations of the security problem that out of order execution
introduces. Note that these solutions are not widely imple-
mented but are rather explorations for future hardware devel-
opment. One such attempt is InvisiSpec, which ensures safer
speculation by storing handled information in a separate buffer
that is only committed if the permissions check out [14]. This
way speculative and out of order execution is still supported but
there is no microarchitectural footprint to follow and therefore
no read leak threat. Similarly, SafeSpec created another interme-
diate structure that is only committed after checks[12]. Both of
these solutions rely on the assumption that while memory read-
ing potential is dangerous, speculative execution is a major con-
tributor to machine performance and cannot simply be scrapped.

5.2 Spectre
A likely exploitation of Spectre is through a web-based attack
using JavaScript, for example in a malicious ad, to leak pri-
vate information, session keys, and such, that are cached in
the browser. As such, companies with browser products like
Google, Mozilla, Apple, and Microsoft have issued new updates
for their browsers to reduce the risk of being under a Spectre

attack. The success of these patches remain unclear, as the com-
panies often do not provide the technical details of the fix, so re-
searchers are unable to analyze how accurate these patches were
able to mitigate Spectre.

Not only have action been taken on browser platforms, but
OS companies have also released patches addressing Spectre.
For example, Windows have released a few Spectre patches for
the two different Spectre variants, but the details of the patches
for the Windows OS also remain unclear as they are not fully
disclosed to the public [19]. There also appears to be multi-
ple different patches released on different dates that address the
same issue (ex/ Spectre Variant 2 [4]). However, due to the lack
of details on how this vulnerability was patched, it is still unclear
to what extent the patches protect the machines. It should also
be noted that a number of patches had to be rolled back due to a
negative performance impact.

6 Conclusion
Meltdown and Spectre, which rely on out of order and specu-
lative execution respectively, disproved the former notion that
hardware optimizations were relatively independent of security
considerations. In this experiment each of us focused on one of
these major vulnerabilities, Juliana on Meltdown and Annie on
Spectre, reproducing the limited PoCs and extending their func-
tionality. For Meltdown this meant modifying the exploit code
for user use. With Spectre, it meant enhancing the existing PoC
to be able to produce more accurate results on any machine by
dynamically measuring an appropriate cache hit threshold. This
paper’s contributions are these modifications, an indication that
while these attacks require a level of technical experience and
sophistication, they are indeed feasible to reenact.

Performing the Meltdown attack on a system often left visi-
ble and unintended side-effects that would be observable by the
user. Such behavior included frozen applications and broken ter-
minals. Therefore it is likely that a victim of a Meltdown attack
would notice some consequences, whether or not the attack suc-
cessfully dumped secret information. This, however, was not a
clear result from running a Spectre attack, thereby making Spec-
tre an even more concerning vulnerability.

Future adaptations or extensions of the Meltdown script
would include improved handling of memory accesses. Error
throwing associated with memory accesses made for inconsis-
tent and difficult to repeat results. This issue could be more ef-
fectively handled in the next iteration of the script.

As for the Spectre research, future work can be done on test-
ing the modified Spectre PoC program on more machines of dif-
ferent architectures. This can produce more concrete and quan-
titative data on the exact % increase in accuracy from using the
integrated tool on each machine. It would also be worthwhile
to analyze the differences in cache threshold for both newer and
older processors.

All in all, successfully reproducing the Meltdown and Spec-
tre exploits demonstrated how reasonably these attacks can be
executed. Then, further enhancing these programs showed the
different possibilities of either creating more potential areas of
attack or the potential of improving the accuracy of extracting
secret victim data.

References
[1] O. Acicmez. Yet another microarchitectural attack: Exploiting

i-cache. In CSAW, 2007.
[2] O. Acicmez, S. Gueron, and J.-P. Seifert. New branch predic-

tion vulnerabilities in openssl and necessary software countermea-
sures. In International Conference on Cryptography and Coding
(IMA), 2007.

[3] Apple Inc. About speculative execution vulnerabilities in arm-
based and intel cpus. https://support.apple.com/
en-us/HT208394.

[4] Common Vulnerabilities and Exposures. Cve-2017-5715.
https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5715.

[5] Common Vulnerabilities and Exposures. Cve-2017-5753.
https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-5753.

[6] Debian. Debian security: Spectre meltdown. https://wiki.
debian.org/DebianSecurity/SpectreMeltdown.

[7] Dr David Levinthal. Performance analysis guide for in-
tel core i7 processor and intel xeon 5500 processors.
https://software.intel.com/sites/products/
collateral/hpc/vtune/performance_analysis_
guide.pdf.

[8] Graz University of Technology. Meltdown and spectre. https:
//meltdownattack.com/.

[9] D. Gullasch, E. Bangerter, and S. Krenn. Cache games - bringing
access-based cache attacks on aes to practice. In S&P, 2011.

[10] IAIK. Meltdown proof-of-concept. https://github.com/
IAIK/meltdown.

[11] Jann Horn. Reading privileged mem-
ory with a side-channel. https://
googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, 1
2018.

[12] C. S. D. E. D. P. N. A.-G. Khaled N. Khasawneh, Esmaeil Mo-
hammadian Koruyeh. Safespec: Banishing the spectre of a melt-
down with leakage-free speculation. Technical report, University
of California, Riverside; College of William and Mary; Bingham-
ton University, June 2018.

[13] P. Koche, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative execution. Jan
2018.

[14] D. S. A. M. C. W. F. Mengjia Yan, Jiho Choi and J. Torrellas.
Invisispec: Making speculative execution invisible in the cache
hierarch. In 51st Annual IEEE/ACM International Symposium on
Microarchitecture, 2018.

[15] Microsoft Docs. rdtsc. https://docs.microsoft.com/
en-us/cpp/intrinsics/rdtsc?view=vs-2019.

[16] D. G. T. P. W. H. A. F. J. H.-S. M. P. K. D. G. Y. Y. M. H.
Moritz Lipp, Michael Schwarz. Meltdown: Reading kernel mem-
ory from user space. In 27th USENIX Security Symposium, 2018.

[17] Oracle. x86 assembly language reference manual sse2 in-
structions. https://docs.oracle.com/cd/E18752_
01/html/817-5477/epmpv.html.

[18] Ulf Frisk. Total meltdown? http://blog.frizk.net/
2018/03/total-meltdown.html, 3 2018.

[19] Windows Support. Protect your windows de-
vices against spectre and meltdown. https://
support.microsoft.com/en-us/help/4073757/
protect-your-windows-devices-against-spectre-meltdown.

